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On the basis of inserting random terms in the heat-transfer equations in a 
gas suspension, the influence of particles on turbulent heat diffusion and 
the behavior of spectral functions of turbulent temperature fluctuations 
are investigated. 

The study of the action of particles on turbulent heat transfer in disperse flows is 
of great interest for power plants, technological metallurgy aggregates, and chemical tech- 
nology. As shown in [i, 2], the influence of particles on heat transfer depends 
substantially on the particle concentration and the relationships between the specific heats 
of the particle and fluid materials. The influence of particles on the spectral character- 
istics of turbulent temperature fluctuations and turbulent heat diffusion in isotropic tur- 
bulence is considered in this paper. Underlying the investigation is the turbulent motion 
model developed by Buevich [3]. According to this model, the velocity of a turbulent homo- 
geneous fluid is determined by taking the average over "physical" volumes with linear di- 
mension L. By analogy with [3], we introduce such an average for the temperature also. We 
then have uL=<u>+ul and T L = <T> + TL'. If the averaging scales of the velocities and 
temperatures are less than the corresponding internal scales of turbulent fluctuations, then 
u L and T L agree with the true random velocity and temperature. If the averaging scales of 
the velocities and temperatures are less than the corresponding scales of the energy-con- 
taining vortices (the external spatial scale of turbulent velocity and temperature fluctua- 
tions), then u L and T L agree with the means <u> and <T> in practice. This latter corresponds 
to taking account of the largest scale fluctuations. Fine-scale fluctuations that vanish 
during averaging introduce a certain contribution to the total transfer in the system. 
The turbulent heat flux due to such fluctuations is represented as 

~L) 07"Zj + ~ )  OTLi ~L)= cpa(L)" (1) 
qL,U = ~ik OX-~ OX k ' 

The energy equation for a homogeneous fluid for quantities averaged in such a manner 
has the form 

O < T )  + ( u >  O ( T ) )  0 0 
cp 0----'~ 0-----~ : -~-r  ( ( q ~  <qL~>' (2) 

where q0 is the heat flux due to molecular heat conductivity, and <qL1> is the heat flux due 
to the large-scale fluctuations. The quantity <qLl> § 0 as L § ~. 

We perform a further analysis by starting from the energy equations for the fluid and 
particles in the form [4] 

OT 0 1 cp 1 ( 3 ) OT ~_ u - -  q ~ (T  - -  Tv),  
at Or Or cp c T; 

OTv 1 OT~----2-~ + v - -  = - -  (T - -  Tv),  ( 4 )  
Ot Or ~. 

2 where Tp = rp Cppp/3Caop is the thermal relaxation time of particles of infinite heat con- 
ductivity in-the small Peclet number approximation. 

Let us consider the case of small particle concentrations and let us neglect the fluc- 
tuations D such that <D> = D. 
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Let us substitute the expressions for u L and T L into (3). 
the equation obtained from the preceding one we obtain for the fluctuations 

Averaging and subtracting 

OT'L O T ~ : c07'~= [. ~ u '  ~ u)= ~ 0 (a,,l+a ~L~) OT~: 
Ot Or Or Or "' s (5) 

; o cp 1 b t(T --T~L) -~- -Or- (qL1 ~. qm ) ) 1 

then (5) describes the degeneration of this If an initial random field TL'(r) is given, 
fluctuation field with time and the accumulation of new fluctuations caused by the action 
of divergence of the random flowqL I. As in [3], we set 

1 
(qgI -- < qL1 > )" := FL, (6) 

c9 

where F L is a random function of the coordinates and the time. 

The time of variation of F L is of the order of the internal time scale �9 of the turbu- 
lence and is the characteristic lifetime of the finest-scale vortices. Neglecting processes 
proceeding in a time ~, the quantity L can be considered a Markov random function of the 
time [3]. The possibility of introducing "secondary" locally independent random heat fluxes 
into the regularized heat-transfer equation is indicated in [5]. 

Performing analogous calculations for (4), we have 

OT'pL OT~L 0.(Tpc)  ( a(pL) 0 0 ~ 1 
- + ( v >  Or +v'L - -  + \  /T '~  + (T'~'T'~L)+F~. (7) Or Or Or .rp 

For simplification we assume that the scales of the change in the mean parameters are 
significantly greater than the turbulence scales and then the third terms in the left sides 
of (6) and (7) can be neglected. 

Let us represent all the random processes in (6) and (7) in the form of stochastic 
Fourier-Stieltjes integrals [6] 

~L = S exp [i (co + ku) t] dZ~. 
- - c o  

Substituting this last relationship into (6) and (7), we obtain for the spectral mea- 
sures 

[ i (o) + uk) + aokZ + a(L)kk + c'p l ] dZ~ : dZe + cp 1 ~dZ~p, (8) 
C T~ C T,p 

[ i ( o ~ + v k ) + a ~ ' k k +  T~I ] d Z T p : : d Z F p -  ~v 1 dZ'" (9) 

Furthermore, we assume in conformity with [6] that the function a (L) is a function of 
the wave number k ~ L-l 

a(L)(k; /d) : :~lJr  S exp[i(o,+k'u)t]*T@; k')dk', 
0 <o k < h "  

a(k) == lima(k; td) for ld-+Oo; 

here t d is the diffusion time and a I is a constant on the order of one. 

In a zeroth approximation in D we have from (8) 

(lO) 

[i (to -i- uk) + akk] dZ~ : dZF. ( l l )  

As in [7], we consider the random accumulation of fluctuations by a process with inde- 
pendent increments, which results in a frequency-independent source spectral densitY~F(k). 
Then, multiplying (ii) by the complex-conjugate expression and performing the statistical 
averaging operation we obtain 

~I~F (k) (12) 
�9 ,,, (o~;  k )  : - 

(05 -[- ku) z -[- (akk) z" 
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Furthermore, integrating with respect to the frequency, we have 

1 t~tjEo (k) 
r - 7 -  a (k) k z (0) q- ku) z q- (a (k) kZ) z" ( 13 ) 

S u b s t i t u t i n g  ( 1 3 )  i n t o  ( 1 0 )  and e x e c u t i n g  t h e  n e c e s s a r y  c a l c u l a t i o n s ,  we a r r i v e  a t  t h e  
expressions 

2 ,~ Eo(k  ) dk, E o ( k ) = 4 a k i E o ( k ) ,  ( 1 4 )  a (~) = ~1 --~ ~ ~2 a (k) 

where E@(k) is a function of the three-dimensional energetic spectrum of the temperature 
fluctuations. 

Differentiating (14) with respect to k, we obtain a differential equation and an ex- 
pression for the coefficient of turbulent heat diffusion 

-•k da (k) 2 E o (k) ( 15 ) 
_ _  _ _  ( g  I - - ,  ao a (k) + a (k) dk 3 k z 

a ( k ) = - - a o +  a ~ + - - a ~  i" E~  dk '/2 ( 16 )  
o ~ k~ 

The expressions (15) and (16) are analogous to the expressions for the turbulent vis- 
cosity of a fluid during isotropic turbulence obtained by Buevich [3]. Formula (16) corre- 
sponds to the interpolation formula [8]. 

To determine the influence of the suspended particles on turbulent transfer, we find 
the correction to the spectral tensor ~T by a direct evaluation of the next term in the ex- 
pansion of the spectral measure T L' and ~. 

We have for the corrections dZT* and dZ T from (8) 

[ i ( m + u k ) + a k 2 l d Z $ = A ( d Z , p - - d Z T ) - - A ' a * k k d Z T ,  ( 1 7 )  

w h e r e  

A cp 1 ~; A' cv 
C Tp C 

Considering the statistical properties of F L and FpL identical and substituting (ii) 
into (9) we obtain in the moving coordinate system (v = 0) 

dE r - -  dZTp : t(o ( 1 - -  B) - -  iukB -k a ;kk  - -  Bakk 
1 

i o  ~- apkk -k  - -  
Tp 

w h e r e  B = c 9 / ( C p p p ) .  

U s i n g  t h e  l a s t  r e l a t i o n s h i p s ,  we o b t a i n  a f o r m u l a  t o  t h e  c o r r e c t i o n ~ T , i j *  and t h e  
s p e c t r a l  t e n s o r  O T , i j  : 

* = 2 A  R e  f ho (1 --- B) - -  iukB -+ a~,kk --- Ba (k) k 2 N 

I ico -~- a~kk + l_J__ 
T 1 , 

�9 i (co + uk) + a (k) k z q- 2A'a* (k) kk Re [ ~' i.. 
�9 'i f ((o + ku) § a (::)/~ J 

Since the case of fine particles is considered, i.e., Tp is less than the external 
time scale t0, we have the estimate m ~ a(k)k 2 ~ i/t0. 

Taking this into account after the calculations we obtain a differential equation for 
the correction to the turbulent heat diffusion coefficient due to distortion of the spectral 
turbulence by the particles 

4 : (,~) + (1 - - B ) a ( k )  Eo(k  ) ( 18 )  da* (k) ~ _ _  %A '  
elk 3 a 2 ( k ) k z 
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Fig. i. Dependence of the ratio between the root-mean-square 
temperature fluctuations in a two-phase and single-phase flow 
on the volume particle concentration: i) • = I0, C/Cp = 0.i; 
2) 10 -3 and 0.i; 3) 10 -3 and 1.0; 4) 10 -3 and i0. 

Fig. 2. Influence of Cp/C on the ratio between the turbulent 
heat diffusion coefficients in two-phase and single-phase flows 
(6 = 5"i0-4; ~ = i0-3). 

Fig. 3. Influence of concentration on the ratio of the turbu- 
lent diffusion coefficients: the curves are the computation 
and the points are experiment [ii]. 

Let us introduce an additional decrease in the measure of the temperature inhomogeneity 
because of the presence of particles by means of the relationship 

(I ~ B~ ~ 
h 

N' ~2fS a(k) j'k2Eo(k)dk. ( 1 9 )  
B o 

The quantity N' has the dimensionality of the temperature squared divided by the time. 
Using the relationships (15), (16), (18), and (19), we calculate the shape of the tempera- 
ture fluctuation spectrum in a fluid containing particles in the equilibrium interval [9]. 
We write the dynamic equation for the spectral function of the temperature fluctuations in 
the form 

0 eodk = S Wdk - 2ao .f k eoek-- N' (k). ( 20 )  
Ot o o o 

0 ~. 
In  t h e  s t a t i s t i c a l  e q u i l i b r i u m  i n t e r v a l  - - ( E o d k ~ N .  Then u s i n g  t h e  t u r b u l e n t  v i s c o s i t y  

Ot J 
0 

h y p o t h e s i s  f o r  t h e  t r a n s p o r t  f u n c t i o n ,  we o b t a i n  

h h h 

N = 2 [a (k) + a* (k)] ~ k2Eodk + 2a o t" k2E~ + 2D [a (k) + a* (k)] .t" k~E~ ( 21) 
0 0 0 

where 

D = ~  (1 --B)2 
B 
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A 

As usual, we introduce the function H(k) =.[ k~Eedk; then (21) is converted to the form 
0 

N 
= (1 + D) [a (k) + a* (k)t + ao. 

2H 

Squaring both sides of the last equation, we differentiate the equation obtained with 
respect to k. We use (15) and (18) to evaluate the derivatives of a(k) and a*(k). Further- 
more, assuming a*(k)<< a(k), neglecting the terms a*/a and ao/a and quadratic terms in the 
volume concentration ~, omitting the calculations we write the final result 

where 

~e /ate-5/ a (22) 
Eo (~) ~ const ~zlsa [1 + 213%]'/a : 

~F 1 i--• ( c p - - •  c . . . . . .  •  1, • .... p/pp. 
C Cp 

For ~ = 0 t he  s p e c t r a l  f u n c t i o n  (22)  goes over  i n t o  the  s p e c t r a l  f u n c t i o n  Of a homo- 
geneous f l u i d .  I t  f o l l o w s  from (22)  t h a t  f o r  ( c / e p ) z  = 1 the  q u a n t i t y  ~1 = 0 and t h e r e  i s  
no spectrum d i s t o r t i o n .  In  the  case o f  heavy p a r t i c l e s  • << 1, a t t e n u a t i o n  occurs o f  the  
turbulent temperature fluctuations for all C/Cp, while in the case of light particles z > 1 
and for C/Cp >> 1 we have attenuation while for c/c D ~ i (Cn/C > (z - i)) we have magnifica- 
tion of the turbulent temperature fluctuations of t~e fluid. ~' 

Considering the particle concentrations small as before and assuming that N in a two- 
phase fluid does not differ radically from that in a homogeneous fluid, we determine an ap- 
proximate expression for the ratio between the average temperature fluctuations in a two- 

,oo 

phase <T'>==:= j" Eedk and in a pure fluid <T~>2: 
0 

( T ' )  z 1 
- ~  (23) 

( 70 > z [I q- 2~:F1] '/a " 
Using the expression 

!I12 4 eo  (k) dk 
a, (0) ~ - ~  ~1 o ~ 

we h a v e  a p p r q x i m a t e l y  a~ I 

aT0 I1 ~- 2 ~ 1 ]  1/6 �9 

H e r e  a T  i s  t h e  c o e f f i c i e n t  o f  t u r b u l e n t  h e a t  d i f f u s i o n  o f  t h e  c a r r y i n g  medium in  t h e  two-  
p h a s e  f l u i d  and a To i n  t h e  p u r e  f l u i d .  

Figure 1 shows the influence of the particle concentration on the magnitude of 
the ratio of the temperature fluctuations for different C/Cp and z. For • << 1 the parti- 
cles exert an overwhelming action on the temperature fluctuation level of the carrying 
medium as C/Cp grows. For ~ > 1 the presence of particles increases the fluctuation level. 
For Cp/C < 1 turbulent heat diffusion depends substantially on the relationships of the spe- 
cific heats of the solid and carrying phase (Fig. 2). In the domain Cp/C > 1 this influence 
attenuates. The deductions obtained are in agreement with theoretical [4] and experimental 
results [I]. 

Figure 3 shows the results of computation using (24), while the points denote the 
experimental data [i0] on determining the ratio of the turbulent diffusion coefficients for 
helium in an air flow with fine heavy zinc particles which are converted to the ratio 
in the magnitude of the turbulent numbers Sc T and Pr T for two-phase flows. Assumed in the 
computations were Sc T = 2.53 [Ii] and Pr T = 1.8 [4]. For small particle dimensions and 
small concentrations the theory yields satisfactory agreement and describes the experimental 
observations qualitatively correctly. 

NOTATION 

c, 0, the fluid specific heat and density; a(L), turbulent heat diffusion tensor; 
rp, particle radius; B, particle weight concentration; a0, coefficient of fluid thermal dif- 
fusivity; k, wave number; t, time; ~T-i~,, spectral temperature fluctuation tensor; ES, spec- 
tral temperature fluctuation function; ~, volume particle concentration. The subscript p 
refers to a variable to the particles. 
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EFFECTIVE VISCOSITY OF AN EMULSION IN A SURFACTANT SOLUTION 

A. Yu. Zubarev and Yu. V. Shilko UDC 539.41:541.182 

A surfactant affects the effective viscosity of an emulsion because of capil- 
lary phenomena in shear flow. The surfactant gives the emulsion non-Newton- 
Jan behavior. 

A surfactant affects emulsion rheology [i] and in particular increases the effective 
viscosity. The usual explanation for this is that surfactant layers are formed around the 
droplets whose surface viscosity is different from the bulk viscosity of the liquids inside 
and outside them (see [i] and references in that review to the primary sources). Here we 
give another explanation based on [2], namely droplet fall in surfactant solutions. 

Consider a droplet in a flowing liquid containing a dissolved surfactant, which is ad- 
sorbed on it and thus reduces the surface tension. The convective surfactant flow alters 
the concentration at the surface, so the interfacial tension varies over the surface, and 
tangential capillary stresses arise that entrain the liquid on both sides in the additional 
flows introduced by the droplet in the external flow. This increases the flow energy dissi- 
pation by comparison with no surfactant. This means that the effective viscosity is in- 
creased in a system containing many such droplets. 

Here we estimate the viscosity from such concepts, where for simplicity we assume that 
all the droplets are identical and the surface tension is sufficient to retain the spherical 
shape. 

The effective viscosity n for a suspension of identical spheres can be derived from 
many equivalent formulas [3-6]; for definiteness, we use the one given in [6]: 

3a3 
(B --'10)ei, = ~ P[r=J~ rinza+dr --  ~o,=a '[ (n'v+ q- n'v+) dr],, i, i, l =  x, g, z, ( l )  

where summation wi th  r e s p e c t  t o  the  r e p e a t i n g  s u b s c r i p t s  i s  unde r s tood .  

The integration is over some arbitrarily selected drop. To calculate the integrals in 
(i), one needs to know the stress o + and velocity v + of the flow at the outer boundary. In 
general, this involves considering many other particles, which is extremely complicated; the 
soundest study appears to be in [6]. To concentrate attention on principles, we consider a 
very dilute system, where each droplet can be considered in isolation. 
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